Lorem Ipsum
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
Compose in YAML and schedule them in serverless Lambda or Airflow. Package them in reusable components for your data analysts to use from the UI.
Fully Open Source. View on GitHub.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
TYPHOON_DEPLOY_TARGET=typhoon
Or try it with zero migration risk with robust Airflow transpilation.
# Simply add this to .cfg and a few settings
TYPHOON_DEPLOY_TARGET=airflow
Because they are pure python you can also easily test them with pytest.

name: favorite_authors
schedule_interval: rate(1 day)
tasks:
choose_favorites:
function: typhoon.flow_control.branch
args:
branches:
- J. K. Rowling
- George R. R. Martin
- James Clavell
get_author:
input: choose_favorites
function: functions.open_library_api.get_author
args:
author: !Py $BATCH
VSCode has auto-complete so its really quick to compose any complex task.
Make your analytics team self-sufficient by creating data pipeline apps so they can create schedules themselves via the api.
